FEMS Microbiol Ecol 2013,83(3):672–684 PubMedCrossRef 43 Beringe

FEMS Microbiol Ecol 2013,83(3):672–684.PubMedCrossRef 43. Beringer JE: R factor transfer in Rhizobium leguminosarum . J Gen Microbiol 1974,84(1):188–198.PubMedCrossRef 44. Robertsen BK, Aman P, Darvill AG, McNeil M, Albersheim P: The structure PFT�� molecular weight of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii . Plant Physiol 1981,67(3):389–400.PubMedCentralPubMedCrossRef 45. Vargas C, McEwan AG, Downie JA: Detection of c-type cytochromes using enhanced chemiluminescence. Anal Biochem 1993,209(2):323–326.PubMedCrossRef

46. Nicholas DJD, Nason A: Determination of nitrate and nitrite. In Methods in Enzymology, VOlume III. Edited by: Colowick SP, Talazoparib chemical structure Kaplan NO. London: Academic Press; 1957:974–977. 47. Zhang X, Broderick M: Amperometric detection of nitric oxide. Mod Asp Immunobiol 2000,1(4):160–165. 48. Sambrook J, Fritsch EF, Maniatics T: Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; selleck screening library 1989. 49. Glenn SA, Gurich N, Feeney MA, Gonzalez JE: The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium

meliloti . J Bacteriol 2007,189(19):7077–7088.PubMedCentralPubMedCrossRef 50. Krol E, Becker A: Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics 2004,272(1):1–17.PubMedCrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions MJT and MJD conceived of the study. MJT and MIR carried out the phenotypic analyses of the E. meliloti denitrification mutants. TC and JJP participated in the gene expression experiments. MJD and EJB supported the research. MJT and MJD wrote the manuscript. EJB coordinated and critically revised Y-27632 2HCl the manuscript. All of the authors read and approved the manuscript.”
“Background Campylobacter jejuni (C. jejuni), a microaerophilic, spiral-shaped, flagellated Gram-negative bacterium, is the most frequent cause of human gastroenteritis worldwide [1]. C. jejuni infections are often caused by consumption of undercooked poultry, unpasteurised milk or contaminated water

[2]. Adhesion of C. jejuni to host cells plays an important role in colonisation of chickens and in human infection [3]. Campylobacter binding to host cell receptors is not mediated by fimbria or pili, like in E. coli and Salmonella[4]. As noted in a recent review, other bacterial cell structures may contribute to interaction of Campylobacter with host cells [5]. In some cases, bacterial adhesion can be mediated by oligosaccharides present on the surface of host cells [6, 7]. In other cases, it is a pathogen oligosaccharide that is responsible for binding to specific, lectin-like, host cell structures. For example, a pathogenic Gram-positive bacterial species Nocardia rubra binds to a human lectin (intelectin) expressed by cells in different organs including intestine [8].

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>