SNPs genotyping analysis of STAT3 in various cells Src inhibitor is required to address these issues in the future. In addition, through our research, patients carrying a high risk of dermatological toxicity by molecular target drugs could be identified by testing for STAT3 polymorphisms.
And, ultraviolet (UV) irradiation increases the potential of dermatological side effects induced by molecular target drugs in clinical reports [48]. STAT3 represents a critical regulator of keratinocytes in response to UVB irradiation [49]. After UVB irradiation, STAT3 is rapidly downregulated in keratinocytes, which leads to decreased cell cycle progression and increased sensitivity
to UVB-induced apoptosis. IACS-10759 It has also been reported that UV specifically decreases the DNA binding activity of STAT3 [50]. Furthermore, UV triggers the activation of members of the MAPK family, including Erk1/2, JNK, and p38 MAPK [50]. UV irradiation can enhance MAPK activity and lead to a greater phosphorylation of STAT3 at Ser727 in the presence of everolimus [26, 51]. These results suggest that the dermatological side effects induced by molecular target drugs can be increased potentially by UV irradiation, with repression of STAT3 activity mediating greater phosphorylation of Ser727. However, additional studies are Vasopressin Receptor necessary to clarify this potency. Conclusions In conclusion, STAT3 activation may be a key factor in everolimus-induced keratinocyte cytotoxicity. Moreover, p38 MAPK and Erk mediated between mTOR signaling and STAT3 signaling may also play an important role of everolimus-induced dermatological side effects. Skin reactions caused by everolimus or other molecular target drugs may
cause significant physical discomfort, thus decreasing the quality of life of patients or leading to the discontinuation of drug therapy. Therefore, a mechanism-based approach, and not just clinical experience-based treatment strategies, to assess dermatological toxicity should be proposed to overcome this uncomfortable reaction. We advocate that cutaneous localized treatment aimed at the maintenance of the homeostasis of STAT3 activity may be an effective strategy. Acknowledgments We thank Dr Kenta Hara (Division of General Medicine, Kobe University Graduate School of Medicine) for helpful comments, technical advices and reviewing an earlier version of the manuscript. This work was supported in part by a research grant from The Nakatomi Foundation and JSPS selleck compound KAKENHI Grant Number 24790156. References 1. Yang CH, Chuang CK, Hsieh JJ, Chang JW: Targeted therapy and hand-foot skin reaction in advanced renal cell carcinoma. Expert Opin Drug Saf 2010, 9:459–470.PubMedCrossRef 2.