An ΔescNΔescU

An ΔescNΔescU https://www.selleckchem.com/products/Roscovitine.html double mutant was generated to investigate if non-specific leakage from bacterial cells was occurring (perhaps due to overexpression of EscU or multi-copy effects). In the absence of EscN, the ATPase of the EPEC T3SS, type III secretion does not occur [38]. EspA, EspB and Tir were

not observed in the secreted sample from the ΔescNΔescU double mutant by Coomassie staining (Figure 1C). Immunoblotting using antibodies against EspA, EspB and Tir did not detect these proteins in the ΔescNΔescU secretion fraction. Genetic complementation of ΔescNΔescU with plasmids expressing wild type EscN and EscU restored the secretion of EspA, EspB and Tir to wild type levels indicating that this double mutant strain could be rescued with multicopy plasmids expressing the appropriate proteins. Complementation of ΔescNΔescU with plasmids pJLT21, pJLT22 and pJLT23 (in the absence of pEscN) did not result in EspA, EspB and Tir secretion as assayed by Coomassie staining and immunoblotting (Figure 1C). Based on these data, the small amount

of EspA, EspB and Tir LEE011 in vitro in culture supernatants for ΔescU/pJLT22 and ΔescU/pJLT23 (Figure 1B and 1C) was due to EscU(N262A) or EscU(P263A) expression, and was EscN dependant. Importantly, plasmid mediated genetic complementation does not introduce leakage artefacts to the experimental system. The 10 kDa EscU auto-cleavage product is membrane associated The observation that uncleaved forms of EscU support very low levels of type III translocon and effector protein secretion was unexpected since EscU auto-cleavage has been suggested to provide a binding interface for protein substrate recognition at the base of the T3SS [26]. We therefore set out to evaluate the cleavage state of our EscU variants within sub-cellular fractions enriched for T3SS needle complexes. To assess EscU auto-cleavage and to detect post-auto-cleavage products, we generated double tagged recombinant EscU forms. A hemagglutinin (HA) tag was fused to the N terminus and a FLAG tag was fused to the C-terminus of EscU. Using this strategy, wild type EscU auto-cleavage

is predicted to produce a 29 kDa transmembrane polypeptide that can be recognized by anti-HA antibodies and a 10 kDa Ponatinib cytoplasmic polypeptide (amino acids 263-345) that can be recognized by anti-FLAG antibodies. ΔescU/pJLT24 (expressing HA-EscU-FLAG) demonstrated a wild type EPEC secretion pattern indicating that the presence of HA and FLAG tags did not inhibit EscU function (data not shown). A sub-cellular fractionation procedure to produce a membrane fraction enriched for T3SS needle complexes [39] was then used to evaluate the double tagged protein constructs in the escU null mutant. The membrane preparation derived from ΔescU/pJLT24 was probed with anti-HA antibodies and anti-FLAG antibodies which detected 29 and 10 kDa polypeptide species respectively (Figure 2).

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>