The first was the one induced with multiple low doses of streptoz

The first was the one induced with multiple low doses of streptozotocin (MLD–STZ). STZ is a chemical substance with alkylation properties that interferes with glucose transportation. A single high-dose strategy results in severe toxicity and acute diabetes. Conversely, the multiple low-dose regimen, characterized by minimal β cell toxicity, PF2341066 results in autoantigen release and a possible break in self-tolerance [3]. The T cell dependence of this model is a debated topic, and needs

further evaluation. What is well established is that diabetes in this model cannot be transferred reliably to syngenic recipients by transfer of splenocytes [4]. Non-obese diabetic (NOD) mice are an inbred strain derived from Jcl:ICR mice [5], which develop type 1 diabetes spontaneously. The infiltration in the islets starts around 4–5 weeks, when pockets of lymphocytes are first observed juxtaposed to the pancreatic islets of young NOD mice. As the animals grow older, these mononuclear cells migrate into the islets, and by the time hyperglycaemia occurs destructive insulitis is present. This model is very similar to the human disease. Disease onset, for example, is preceded by infiltration of pancreatic islets by mononuclear cells and is controlled by many quantitative trait loci, particularly major histocompatibility

complex (MHC) class II genes. Diabetes in NOD mice is the most extensively studied model of autoimmune

disease [6, 7]. The discovery of regulatory T cells EX-527 (Tregs) disclosed a new field to be explored in the control of autoimmune pathologies [8]. Heat shock proteins (hsps) are molecules up-regulated in conditions of stress that are highly conserved throughout evolution [9]. Although recent research implicates hsp60 as an autoantigen involved in type 1 diabetes pathogenesis [10], this protein also contributes to protection against autoimmune diseases. It has been described that microbial homologues of mammalian hsps could induce the recruitment of Tregs to inflamed tissues [9]. In this study, we investigated the possible protection against type 1 diabetes through a prime-boost vaccination strategy. This strategy consists in priming the system with the antigen administered in one vector and then boosting it with the same antigen, but through another new vector [11]. Thus, we made use of two different vaccines containing mycobacterial hsp65: bacille Calmette–Guérin (BCG) and pVAXhsp65, a DNA vaccine. This association could, theoretically, be interesting because both vaccines have been already tested separately against diabetes and other autoimmune diseases and showed positive results [12-15]. We hypothesized that the prime-boost strategy could expand these beneficial effects. Female NOD mice and male C57BL/6 mice were obtained from the animal facility of State University of Campinas (UNICAMP, Campinas, São Paulo, Brazil).

None “
“CD4+ T (helper) cells migrate in huge numbers throu

None. “
“CD4+ T (helper) cells migrate in huge numbers through lymphoid organs. However, little is known about traffic routes and kinetics of CD4+ T-cell subsets within different organ compartments. Such information is important because there are indications that CD4+ T cells may influence the function of microenvironments depending on their developmental stage. Therefore, we investigated the migration of resting (naïve), activated, and recently activated (memory) CD4+ T cells through the different compartments of the spleen. Resting and recently activated CD4+ T cells were separated from thoracic duct lymph and activated CD4+ T

cells were generated in vitro by cross-linking the T-cell receptor and CD28. The present study shows that APO866 clinical trial all three CD4+ T-cell subsets selectively accumulate in the T-cell zone of the spleen. However, only activated T cells induce the MK0683 cell line formation of germinal centers (GCs) and autoantibodies in rats and mice. Our results suggest that in a two-step process they first activate B cells independent of the T-cell receptor repertoire and CD40 ligand (CD154) expression. The activated B cells

then form GCs whereby CD154-dependend T-cell help is needed. Thus, activated T cells may contribute to the development of autoimmune diseases by activating autoreactive B cells in an Ag-independent manner. “
“Mutations in the Nlrp3 (CIAS1, cryopyrin) gene are associated with cryopyrin-associated periodic syndrome, autoinflammatory diseases characterized by excessive IL-1 production and neutrophilia in blood and tissues. Recent studies with gene-targeted mice expressing mutations homologous to those found in cryopyrin-associated periodic syndrome patients have advanced the understanding of NLRP3-associated autoinflammation. In this Viewpoint, we will discuss the mechanisms of NLRP3 inflammasome activation and its induction of Th17-cell-dominant immunologic responses. The understanding MycoClean Mycoplasma Removal Kit of various inflammasomes,

particularly the NLRP3 inflammasome, has been greatly enhanced by the investigation of gene-targeted mice in which inflammasome components have been knocked out 1–5. Such knock-out mice, however, provide only limited insight into the function of the inflammasome in humans with autoinflammatory syndromes (i.e. patients with cryopyrin-associated periodic syndromes (CAPS)), as the latter are characterized by Nlrp3 mutations causing inflammasome hyperactivation rather than decreased function 6–8. Recently, gene-targeted mice with such mutations of the Nlrp3 gene have been developed, and these mice do in fact express abnormalities associated with human autoinflammatory syndromes 9, 10.

These results suggested that the construct might have been submit

These results suggested that the construct might have been submitted through the germline although no proof for genome integration was obtained. Taken together, click here the articles by Heyers et al. and Beckmann et al. (12,18) show proof of principle that it might be possible to enter the germline using transformed miracidia. A further publication by Wippersteg et al. (19) reports the tissue-specific

expression of GFP driven by the promoters of two S. mansoni protease genes cathepsin L1 and cathepsin B2. As predicted from earlier reports (20), the S. mansoni cathepsin L1 promoter drove GFP expression throughout the gut whereas transformation with the SmCB2 (21) construct resulted in GFP fluorescence localized in the tegument. Particle bombardment was also employed by Beckmann et al. (18). Here, different reporter gene constructs using the S. mansoni actin1 regulatory elements and GFP as reporter SB525334 mouse gene were used for transient transformation of adult males and sporocysts. A 445-bp promoter fragment was sufficient for transcription initiation in larvae or adults as confirmed by confocal microscopy. Actin gene characteristic TATA, CArG and CAAT boxes were identified in the promoter, suggesting that it is functionally conserved between vertebrates and invertebrates. However, a vertebrate-specific intron containing an additional regulatory CArG box was not found indicating that

the regulation of SmAct1 transcription depends exclusively on its promoter region. In addition, the authors showed GFP expression in the tegumental area, especially the tubercles, in the muscle tissue

and weakly in the parenchyma of the male worms. The most recent publication describing the transfection of schistosomes Dolutegravir ic50 using biolistic methods was only published last year (22). Here, modified reporter gene constructs containing 5′ and 3′ regulatory regions of protease genes (cathepsins F and D) were used to transfect immature adult worms. The results obtained showed that there was a minor improvement of the intensity and distribution of the reporter signal in constructs containing parts of the ORF and/or 3′ gene-specific genomic fragments. However, reporter signals were found in tissues other than the gut and the authors suggest that this might represent dysregulated transcription which could impact on the utility of biolistics as a tool to accurately profile spatial expression of transgenes. Electroporation as a tool to introduce plasmid-based DNA constructs was tested in S. japonicum and S. mansoni (23,24). Yuan et al., using a commercial plasmid (pEGFP-C1), showed that the cytomegalovirus (CMV) promoter was able to drive EGFP expression in primary cell cultures of S. japonicum. Introduction of the plasmid into schistosomula and adult worms by electroporation led to EGFP expression as demonstrated by RT-PCR, Western blotting and confocal microscopy with EGFP fluorescence detectable along the tegumental surface of the worms (24).

05) Conclusions:  Urinary angiotensinogen levels were remarkably

05). Conclusions:  Urinary angiotensinogen levels were remarkably high in the acute phase in the patients with proteinuric HSP, suggesting increased UAGT may indicate a series of functional changes in the kidney and it may be used as a potential biomarker of severity of HSP to monitor the progression of HSP with renal involvement. “
“Date written: December 2008 Final submission: October 2009 No recommendations possible based on Level

I or II evidence (Suggestions are based on Level PF-562271 III and IV evidence) Atherosclerotic renovascular stenosis is a potentially progressive disease. Not relevant to this subtopic. This guideline covers the following areas: ARVD For the purposes of this guideline and after accommodating for variability between studies (reviewed below), ARVD has been classified into this website the following grades based on the degree of stenosis: high (>70%) The following endpoints have been addressed when considering the natural history

of ARVD: Clinical: requirement of hypertensive medications Approximately 1–6% of hypertensive patients have renovascular lesions on arteriography.1–4 Unselected autopsy data suggest that 27% of patients over 50 years have more than 50% stenosis of at least one renal artery.5 It is the primary cause of renal failure in 5–22% of patients over 50 years who begin dialysis. Various risk factors have been identified in relation to the occurrence and progression of ARVD. Management of ARVD is made controversial by the lack of randomized controlled trials. Available studies differ widely in the variables that may influence renal survival such as hypertension control, interventions for revascularization (surgery, angioplasty alone, and angioplasty with stenting with and without distal protection devices) and medical therapy. Furthermore, Forskolin clinical trial the potential risks

of the intervention such as contrast nephropathy and cholesterol embolism may cause significant morbidity. Knowledge of the natural history and risk factors for progression of RAS can thus be helpful in deciding whether, when and how to intervene. A number of studies looking at the natural history of ARVD have demonstrated progression of RAS, including to renal artery occlusion. However, there is no Level I or II evidence to support any recommendations regarding the natural history. Prospective studies are scarce because of the multiple interventions that either confound the results or make such study designs impractical. Allocation of patients with very mild or very severe lesions to the conservative management arm may lead to selection bias. Knowledge of the natural progression of ARVD has been largely derived from studies that are retrospective, have used historical controls, or case series.

HCV presumably causes these lymphoproliferations by chronic antig

HCV presumably causes these lymphoproliferations by chronic antigenic stimulation and/or direct mutagenic effects on B cells. It has been speculated that the interaction of HCV with B cells and the expansion of antigen-triggered

B cells happens in germinal center-like structures in the livers of HCV carriers. We studied rearranged immunoglobulin VH genes from seven B-cell follicles microdissected from the livers of three unselected chronic HCV patients. The follicles consisted of polyclonal naive and memory B-cell populations with only rare indication of minor clonal expansions and no evidence for active somatic hypermutation. Frequent detection of VH selleck chemical rearrangements using the VH1-69 gene segment nevertheless indicated that at selleck chemicals least a fraction of

the B cells is HCV-specific and/or autoreactive. Thus, the typical intrahepatic B-cell follicles in chronic HCV carriers do not function as ectopic germinal centers for clonal expansion and affinity maturation of B cells. Hence, autoreactive and HCV-specific B-cell clones might either develop in secondary lymphoid organs or in intrahepatic follicles only under particular, yet undefined, circumstances. “
“Pulmonary tuberculosis (TB) is an infectious disease disturbing status of public health, and accurate diagnosis of TB would effectively help control the disturbance. Our study tried to establish a classification tree model that distinguished active TB from non-TB individuals. We used matrix-assisted laser desorption/ionization DAPT clinical trial time of flight mass spectrometry (MALDI-TOF MS) combined with weak cationic exchange (WCX) magnetic beads to analyse 178 serum samples containing 75 patients with active TB and 103 non-TB individuals (43 patients with common pulmonary diseases and 60 healthy controls). Samples were randomly divided into a training set and a test set. Statistical softwares were applied to construct this model. An amount of 48 differential expressed peaks (P < 0.05) were identified by the training set, and our model was set up by three of them, m/z 7626, 8561 and 8608. This model can discriminate patients with active TB from patients

with non-TB with a sensitivity of 98.3% and a specificity of 84.4%. The test set was used to verify the performance, which demonstrated good sensitivity and specificity: 85.7% and 83.3%, respectively. Differential expressed peaks between smear-positive and smear-negative active TB also have been analysed. It came out that m/z 8561 and 8608 not only acted as vital factors in the pathogenesis of active TB but also played an important role in regulating different active TB status. In conclusion, MALDI-TOF MS combined with WCX magnetic beads was a powerful technology for constructing classification tree model, and the model we built could serve as a potential diagnostic tool for active TB. Tuberculosis (TB) is a contagious and airborne disease caused by the infection of Mycobacterium tuberculosis (M.tb).

We have previously demonstrated that Bordetella pertussis toxin-i

We have previously demonstrated that Bordetella pertussis toxin-induced HA sensitization (Bphs) is a shared autoimmune disease susceptibility gene in EAE and experimental allergic orchitis, and positional candidate gene cloning identified Bphs to be Hrh1 [[27]]. In addition, gene targeting ABC294640 in vivo studies from our lab and other groups demonstrated that HA, H1R, H2R, H3R, and H4R play important roles in EAE susceptibility and pathogenesis, either by regulating

encephalitogenic T-cell responses, cytokine production by antigen-presenting cells (APCs), BBB permeability, or T regulatory (Treg)-cell activity [[27, 30-34]]. The current therapeutic mainstays for MS include IFN-β and glatiramer acetate; however, in most instances, these Selleck Decitabine drugs are of limited efficacy [[35]]. Consequently, research efforts have been increasingly directed toward identifying new therapeutic modalities and disease-modifying therapies (DMTs). Previously, using individual H1R-H4RKO mice, we showed that H1R and H2R are propathogenic, whereas H3R and H4R are antipathogenic. This

suggests that combinatorial pharmacological targeting of HRs may be an effective DMT in MS. To test this hypothesis, we generated H1H2RKO and H3H4RKO mice on the C57BL/6J (B6) background and studied them for susceptibility to EAE elicited by immunization with myelin oligodendrocyte glycoprotein peptide 35–55 (MOG35–55). The results of our study show that compared to B6 mice, H1H2RKO

mice exhibit decreased susceptibility to EAE, whereas H3H4RKO mice develop more severe disease. The findings of our study support the concept that combined pharmacological targeting of HRs may be an appropriate DMT in the treatment of MS and other immunopathologic diseases, particularly given the recent development of highly selective agonists and antagonists for H3R and H4R [[36]]. EAE was induced in B6, H1H2RKO, and H3H4RKO mice by immunization using a 2× MOG35–55-CFA protocol [[37, 38]]. The severity of the clinical disease courses differed significantly among the three strains (F = 28.5; p < 0.0001) (Fig. 1A), with H1H2RKO mice exhibiting significantly less severe disease than both B6 (F = 17.3; p < 0.0001) and H3H4RKO ADAMTS5 (F = 57.3; p < 0.0001) mice. In contrast, the severity of the clinical disease course of H3H4RKO mice was significantly greater than B6 (F = 8.2; p < 0.0001) and H1H2RKO (F = 57.3; p < 0.0001) mice. Analysis of EAE-associated clinical quantitative trait variables [[31]] revealed that the percentage of animals affected, cumulative disease score, and days affected were significantly greater in H3H4RKO compared with B6 mice. In contrast, percentage of animals affected, cumulative disease score, and days affected were significantly less in H1H2RKO compared with B6 mice (Table 1).

The FYVE and coiled-coil domain-containing protein FYCO1 function

The FYVE and coiled-coil domain-containing protein FYCO1 functions as a Rab7 effector, binding to LC3 and PI3P and mediating microtubule plus

end-directed vesicle transport (74). The fusion of autophagosomes and lysosomes is positively regulated by the UVRAG-Vps34-beclin1 PI3-kinase complex and negatively regulated by the Rubicon-UVRAG-Vps34-beclin1 PI3-kinase complex (Fig. 1, Autophagosome-lysosome fusion) (26–29, 38). Following autolysosome formation, the lysosomal hydrolases, including cathepsins, lysosomal glycolytic enzymes, and lipases, degrade the intra-autophagosomal contents. In this step cathepsins degrade LC3-II on the intra-autophagosomal GPCR Compound Library cost surface (Fig. 1, Degradation) (75, 76). In yeasts, Atg15, a vacuolar lipase, and Atg22, a vacuolar membrane protein, are indispensable for the specific degradation of autophagic bodies (77–79). No mammalian homologs of yeast Atg15 and Atg22 have

yet been identified. During conversion by Atg4B of LC3-II to LC3-I on the cytoplasmic face of the autophagosome and degradation by lysosomal hydrolases of LC3-II on the luminal learn more face of autophagosome, LC3-II decreases. After digestion of intra-autophagosomal contents, a lysosomal-associated membrane protein 1 -positive and LC3-negative tubular structure, the protolysosome, is elongated from the autolysosome (Fig. 1, Protolysosome) (80). The protolysosome finally forms a vesicle, and matures into the lysosome by accumulating of lysosomal hydrolases. It is necessary to estimate autophagic activity accurately and quantitatively when studying autophagy

in infection and immune responses. LC3-II and LC3-positive puncta are recognized as promising autophagosome and autolysosome markers (but not “autophagy” markers). However, autophagosomes and autolysosomes are transient structures during autophagy. Therefore, the amount of LC3-II (or number of LC3-positive puncta) alone does Methane monooxygenase not always reflect autophagic activity. Production of LC3-II is increased when autophagy is activated (Fig. 1, Maturation), in addition lysosomal degradation of LC3-II and delipidation of LC3-II by Atg4B are simultaneously activated (Fig. 1, Autophagosome-lysosome fusion). Many methods for monitoring autophagy, including GFP-LC3, tf-LC3, and LC3-II turnover assay, have been proposed, these have both advantages and disadvantages. Recently, critical issues and guidelines for monitoring autophagy have been described (81–83). LC3 fused to green fluorescent protein is useful for in vivo imaging of autophagosome formation (84, 85). However, caution must be exercised due to the limitations of GFP-LC3 (86, 87). GFP-LC3 tends to form puncta in cells independent of autophagy, and GFP fluorescence in lysosomes may occur even after degradation of the LC3 moiety. Therefore, this method tends to overestimate the number of autophagosomes. These problems may be avoided by using a mutant, GFP-LC3ΔG which lacks the essential carboxy-terminal Gly of LC3, as a negative control (Fig. 2, LC3ΔG).

Urinary Emmprin, MMP-9 and TIMP-1 may be noninvasive potential bi

Urinary Emmprin, MMP-9 and TIMP-1 may be noninvasive potential biomarkers that could be used for long-term follow-up of children with UPJ narrowing on conservative Selleck AZD2281 treatment to determine those who might develop

obstruction. “
“151 CLASS II EXPRESSING RENAL TUBULAR CELLS LEAD TO RECONSTITUTION OF CD4 T CELLS IN CLASS II DEFICIENT MICE Y M WANG1, GY ZHANG1, A SAWYER1, JH ZHOU1, M HU2, G ZHENG2, Y WANG2, DC HARRIS2, SI ALEXANDER1 1Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, NSW; 2Centre for Transplantation and Renal Research, University of Sydney, Westmead Millennium Institute, Sydney, NSW, Australia Aims: To identify whether reconstitution of Class II expression in thymus by Class II expressing renal tubular cells may lead R788 mw to reconstitution of kidney specific CD4 T cells in Class II deficient mice. Background: Regulatory T cells (Tregs) are generated

in thymus and are of the CD4 subset. Tregs require MHC Class II to be selected in the thymus. MHC Class II knockout (Class II−/−) mice are deficient in CD4 T cells. Studies have shown that renal tubular cells can express MHC class II. This study identifies the induction of CD4 T cells and Tregs by reconstitution of Class II expressing tubular cells into thymus. Methods: Renal tubular cells were isolated from C57BL/6 Ly5.1 mice and were cultured with IFN-γ. The cultured tubular cells were assessed for Class II expression and

then injected into the thymus of Class II−/− mice. CD4, CD8 and Tregs were assessed by flow cytometry prior and after tubular cell injection. Two months after thymus injection, CD4 T cells and Tregs were assessed Cell press in kidney and spleen by immunohistochemical staining. Results: 30% of tubular cells expressed MHC Class II after ten-day co-culture with IFN-γ. CD4+ T cells in Class II−/− mice increased from less than 1% of total CD3+ T cells before tubular cell injection to 1.4% at week four and 7% at two months after tubular cell thymic injection. Immunohistochemical staining showed that there were increased CD4+ T cells and Tregs in spleen and kidney for these class II deficient mice. Conclusions: Reconstitution of Class II expression in thymus by class II expressing renal tubular cells lead to reconstitution of CD4 T cells including Tregs in Class II deficient mice.

In this system, DDA targets the vaccine antigen to APCs while TDB

In this system, DDA targets the vaccine antigen to APCs while TDB provides proinflammatory stimuli, triggering a Th-1 cytokine response via a TLR-independent pathway (Agger et al., 2008). CAF01 has proven to be highly efficacious, inducing cellular and humoral responses simultaneously in animal models more effectively than the single antigens administered alone. In addition to its priming activity, this vaccine has also been demonstrated to have a BCG booster effect (Doherty et al., 2004; Davidsen et al., 2005). AS01B, developed by Corixa

and GlaxoSmithKline Lumacaftor in vivo Biologicals, contains the TLR4 ligand MPL and the saponin derivative QS-21 in a liposomal formulation including the fusion molecule Mtb72F. The Mtb72F antigen is comprised of the PPE family member Rv1196 inserted into the middle HSP signaling pathway of the putative serine protease Rv0125, which is thus present as two fragments (Mtb32C–Mtb39–Mtb32N) (Skeiky et al., 2004). In the AS01B or AS02A formulations, this vaccine has also been demonstrated to have priming and BCG booster effects (Brandt et al.,

2004). IC31, also developed by the Statens Serum Institute, consists of a vehicle combining the synthetic antimicrobial peptide KLKL5KLK, which actively loads APCs with antigen, and the immunostimulatory TLR9 ligand ODN1a, with the fusion proteins H1 and Ag85B–TB10.4 (Agger et al., 2006; Lingnau et al., 2007). This vaccine confers protective immunity in murine tuberculosis models and was recently shown to safely induce strong T-cell responses with a mixed Th-1/Th-2 cytokine profile in both neonates and adults (Kamath et al., 2008). CAF01, AS01B and IC31 are currently undergoing clinical Phase I/II trials. Mtb72F/AS01B is being tested in Lausanne, Switzerland, in individuals previously check details exposed to BCG or previously treated individuals

currently infected with Mtb. H1 in IC31 and CAF01 are being tested in Leiden, the Netherlands, in purified protein derivative (PPD)-negative subjects. These adjuvants share the same basic combination of a delivery vehicle and a Th-1-skewing immunomodulator, conferring more potent protection against tuberculosis infection than single immunomodulators (CpG or MPL) or delivery vehicles lacking immunomodulators (liposomes or niosomes) (Agger et al., 2006). LTK63, a modified and detoxified heat-labile toxin derived from E. coli, has been combined with the fusion protein H1 for nasal immunization and has passed Phase I clinical trials (in London, UK, with PPD-negative subjects). A strong and sustained Th-1 response mediated by IFN-γ-secreting CD4+ T cells was observed, leading to long-lasting protection against tuberculosis and boosting prior BCG-induced immunity (Dietrich et al., 2006; Badell et al., 2009).

19) Among patients receiving cinacalcet, the average carotid-fem

19). Among patients receiving cinacalcet, the average carotid-femoral pulse wave velocity increased from 10.46 ± 2.12 m/s at baseline to 11.41 ± 2.79 m/s at 52 weeks (P = 0.001). The change in carotid-femoral pulse wave velocity over 1 year had no significant correlation with the final parathyroid hormone level or change in parathyroid hormone level. Among prevalent patients receiving peritoneal dialysis and with hyperparathyroidism, a reduction of 60.6% parathyroid hormone level after cinacalcet treatment for one year did not reduce the carotid-femoral pulse wave velocity. “
“Sudden cardiac MK-2206 mw death (SCD) is the most common cause of death

in haemodialysis patients, accounting for 25% of all-cause mortality. There are many potential pathological precipitants as most patients with end-stage renal disease have structurally or functionally abnormal hearts. For example, at initiation of dialysis, 74% of patients have left ventricular hypertrophy. The pathophysiological and metabolic milieu of patients with end-stage renal disease, allied to the regular stresses of dialysis, may provide

the trigger to a fatal cardiac event. Prevention of SCD can be seen as a legitimate target to improve survival in this patient group. In the general population, this is most effective by reducing the burden of ischaemic heart disease. However, selleck screening library the aetiology of SCD in haemodialysis patients appears to be different, with myocardial fibrosis, vascular calcification and autonomic

dysfunction implicated as possible causes. Thus, the range of therapies is different to the general population. There are potential preventative measures emerging as our understanding of the underlying mechanisms progresses. This article aims to review the evidence for therapies to prevent SCD effective in the general population when applied to dialysis Liothyronine Sodium patients, as well as promising new treatments specific to this population group. The most widely agreed definition of sudden cardiac death (SCD) is unexpected cardiac death that occurs within 1 h of onset of symptoms in a person without a prior condition that would appear fatal.[1] In end stage kidney disease (CKD-5D) patients undergoing haemodialysis, SCD is common. The United States Renal Data System (USRDS) reports that ‘cardiac death, cause unknown’ and arrhythmia account for 25% of all-cause mortality at a rate of 90–200 events/1000 patient-years.[2] This compares with 1–2 events/1000 patient-years in the general population. However, epidemiological data pertaining to the fatal rhythm in dialysis patients who suffer SCD are lacking. Cardiac structure and function are frequently abnormal in CKD-5D; findings associated with vulnerability to malignant arrhythmia. It is likely that SCD is a result of various triggers on an already abnormal myocardium (Fig. 1). For example, dialysis itself is likely to play a prominent role.