HOMO and LUMO energy levels of CZTSe films
both shifted {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| down after ligand exchange, and a type I band alignment structure was more conveniently formed at the CdS/absorption layer interface in CZTSe solar cells. This structure acts as the barrier against injection electrons from ZnO to the CZTSe layer, and recombination will subsequently be depressed. Overall, the cell efficiencies relatively depend on the energy level alignment and ligand NVP-BSK805 mw exchange will make great contribution in this aspect. Acknowledgements This project is supported by the National Natural Science Foundation of China (21203053, 21271064, and 61306016), the Joint Talent Cultivation Funds of NSFC-HN (U1204214), the New Century Excellent Talents in University (NCET-08-0659), the Program for
Changjiang Scholars and Innovative Research Team in University (PCS IRT1126), the Natural Science Foundation of Shandong Province (ZR2011BQ011), and the Scientific Research Foundation of Henan University (SBGJ090510 and B2010079). References 1. Shavel A, Arbiol J, Cabot A: Synthesis of quaternary chalcogenide nanocrystals: stannite Cu 2 Znx S nySe 1+x+2y . J Am Chem Soc 2010, 132:4514–4515. 10.1021/ja909498c20232869CrossRef 2. Chen SY, Gong XG, Walsh A, Wei SH: Crystal and electronic band structure of Cu 2 ZnSnX 4 (X = S and Se) photovoltaic absorbers: first-principles insights. Appl Phys Lett 2009, 94:041903. 10.1063/1.3074499CrossRef 3. Shi L, Pei CJ, Li Q, Xu YM: Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu 2 ZnSnS 4 and Cu 2 ZnSnSe 4 . J Am Chem Soc 2011, 133:10328–10331. 10.1021/ja201740w21682309CrossRef TCL Vorinostat cost 4. Yen YT, Lin YK, Chang SH, Hong HF, Tuan HY, Chueh YL: Investigation of bulk hybrid heterojunction solar cells based on Cu(In, Ga)Se2 nanocrystals. Nanoscale Res Lett 2013, 8:329. 10.1186/1556-276X-8-329373381923870036CrossRef 5. Liou JC, Diao CC, Lin JJ, Chen YL, Yang CF: Prepare dispersed CIS nano-scale particles and spray coating CIS absorber layers using nano-scale precursors. Nanoscale Res Lett 2014, 9:1. 10.1186/1556-276X-9-1389574024380376CrossRef
6. Zhou ZH, Wang YY, Xu D, Zhang YF: Fabrication of Cu 2 ZnSnS 4 screen printed layers for solar cells. Sol Energy Mater Sol Cells 2010, 94:2042–2045. 10.1016/j.solmat.2010.06.010CrossRef 7. Wibowo RA, Lee ES, Munir B, Kim KH: Pulsed laser deposition of quaternary Cu 2 ZnSnSe 4 thin films. Phys Stat Sol A 2007, 204:3373–3379. 10.1002/pssa.200723144CrossRef 8. Salome PMP, Fernandes PA, da Cunha AF, Leit JP, Malaquias J, Weber A: Growth pressure dependence of Cu 2 ZnSnSe 4 properties. Sol Energy Mater Sol Cells 2010, 94:2176–2180. 10.1016/j.solmat.2010.07.008CrossRef 9. Volobujeva O, Raudoja J, Mellikov E, Grossberg M, Bereznev S, Traksmaa R: Cu 2 ZnSnSe 4 films by selenization of Sn-Zn-Cu sequential films. J Phys Chem Solids 2009, 70:567–570. 10.1016/j.jpcs.2008.12.010CrossRef 10.